Metric subregularity for proximal generalized equations in Hilbert spaces
نویسندگان
چکیده
In this paper, we introduce and consider the concept of the prox-regularity of a multifunction. We mainly study the metric subregularity of a generalized equation defined by a proximal closed multifunction between two Hilbert spaces. Using proximal analysis techniques, we provide sufficient and/or necessary conditions for such a generalized equation to have the metric subregularity in Hilbert spaces. We also establish results of Robinson-Ursescu theorem type for prox-regular multifunctions.
منابع مشابه
Hölder Metric Subregularity with Applications to Proximal Point Method
This paper is mainly devoted to the study and applications of Hölder metric subreg-ularity (or metric q-subregularity of order q ∈ (0, 1]) for general set-valued mappings between infinite-dimensional spaces. Employing advanced techniques of variational analysis and generalized differentiation, we derive neighborhood and pointbased sufficient conditions as well as necessary conditions for q-metr...
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملLocal convergence of quasi-Newton methods under metric regularity
We consider quasi-Newton methods for generalized equations in Banach spaces under metric regularity and give a sufficient condition for q-linear convergence. Then we show that the well-known Broyden update satisfies this sufficient condition in Hilbert spaces. We also establish various modes of q-superlinear convergence of the Broyden update under strong metric subregularity, metric regularity ...
متن کاملMetric Subregularity and Constraint Qualifications for Convex Generalized Equations in Banach Spaces
Several notions of constraint qualifications are generalized from the setting of convex inequality systems to that of convex generalized equations. This is done and investigated in terms of the coderivatives and the normal cones, and thereby we provide some characterizations for convex generalized equations to have the metric subregularity. As applications, we establish formulas of the modulus ...
متن کاملMetric Subregularity and Calmness for Nonconvex Generalized Equations in Banach Spaces
This paper concerns a generalized equation defined by a closed multifunction between Banach spaces, and we employ variational analysis techniques to provide sufficient and/or necessary conditions for a generalized equation to have the metric subregularity (i.e., local error bounds for the concerned multifunction) in general Banach spaces. Following the approach of Ioffe [Trans. Amer. Math. Soc....
متن کامل